Participating Groups

Cardiff University LogoCranfield University LogoSciences and Technology Facilities Council LogoEPCC LogoImperial College London LogoUniversity of Leeds LogoManchester University LogoOxford University LogoUniversity of Strathclyde LogoUCL Logo

View all


Subset of a wild-type P6 retinal plexus used to reconstruct one of our retinal blood flow models, namely P6A model. The original microscope image is segmented and the network skeleton and segment radii are computed. Based on these values, a three-dimensional volume is reconstructed assuming vessels of piecewise constant radius. (a) Original image. (b) Segmented image. (c) Reconstructed surface. Reproduced from [Bernabeu et al., Journal of the Royal Society Interface, 2014].


Rayleigh-Bénard natural heat convection between cold and hot plates, using additional lattice for heat flows and Boussinesq approximation to couple temperature and fluid flow. Temperature indicated by colour field, fluid flow by velocity streamlines. Included as a demo with DL_MESO.



A. Hantsch, T. Reis and U. Gross, "Moment method boundary conditions for multiphase lattice Boltzmann simulations with partially-wetted walls", Journal of Computational Multiphase Flows 7 (1), 1-14 (2015). DOI: 10.1260/1757-482X.7.1.1

D. Lycett-Brown and K. H. Luo, “Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios”, Physical Review E 91 (2), 023305: 1-12 (2015). DOI: 10.1103/PhysRevE.91.023305

J. Suter, D. Groen and P. V. Coveney, "Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties", Advanced Materials 27 (6), 966-984 (2015). DOI: 10.1002/adma.201403361

J.L. Suter, D. Groen, P.V. Coveney, "Mechanism of Exfoliation and Prediction of Materials Properties of Clay–Polymer Nanocomposites from Multiscale Modeling", Nano letters 15 (12): 8108-8113, (2015).

C. Tsotskas, T. Kipouros and A. M. Savill, “Fast multi-objective optimisation of a micro-fluidic device by using graphics accelerators for environmentally friendly applications”, ICCS (International Conference on Computational Science) 2015 Workshop on Computational Optimisation in the Real World (Accepted).

M. Gross, T. Krüger and F. Varnik. "Fluctuations and diffusion in athermal suspensions of deformable particles", Europhys. Lett. 108, 68006 (2015). DOI: 10.1209/0295-5075/108/68006

S. Frijters, T. Krüger and J. Harting. "Parallelised Hoshen-Kopelman algorithm for lattice-Boltzmann simulations", Comput. Phys. Commun. 189, 92-98 (2015). DOI: 10.1016/j.cpc.2014.12.014

R. Vernekar and T. Krüger. "Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: a numerical study", Med. Eng. Phys. 37, 845-854 (2015). DOI: 10.1016/j.medengphy.2015.06.004

M. Seaton, L. Mason, Z. A. Matveev and S. Blair-Chappell, “Vectorization advice”, chapter 23 (pp. 441–462) in J. Reinders and J. Jeffers (ed.), “High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches. Volume Two”, Elsevier: Amsterdam (2015)

M. Seaton, P. Warren and A. Masters, “Polarisable charge models for dissipative particle dynamics”, 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD2015), Edinburgh, UK, 13-17 July (2015)

M. Seaton, L. Mason and T. Hewitt, “Porting mesoscale modelling codes to Intel Many Integrated Core Architecture”, 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD2015), Edinburgh, UK, 13-17 July (2015)

Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen and Q. Liu, “Lattice Boltzmann methods for multiphase flow and phase-change heat transfer,” Progress in Energy and Combustion Science 52: 62-105 (2015). DOI: 10.1016/j.pecs.2015.10.001

Q. Li, Q. J. Kang, M. M. Francois, Y. L. He and K. H. Luo, “Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability,” International Journal of Heat and Mass Transfer 85: 787-796 (2015, June). DOI: 10.1016/j.ijheatmasstransfer.2015.01.136

Q. Mao and K. H. Luo, “Molecular dynamics simulation of sintering dynamics of many TiO2 nanoparticles,” J. Statistical Physics 160: 1696–1708 (2015, 28 June). DOI: 10.1007/s10955-015-1304-z

Q. Mao, Y. Ren, K. H. Luo, S. Li, “Sintering induced phase transformation of nanoparticles: A molecular dynamics study,” The Journal of Physical Chemistry C 119 (51): 28631-28639 (November 30, 2015). DOI:10.1021/acs.jpcc.5b08625

D. Lycett-Brown and K. H. Luo, “Forcing term for the multiphase cascaded lattice Boltzmann Method,” 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD2015), Edinburgh, UK, 13-17 July (2015).

Y. Zhang and K. H. Luo, “Investigation into droplet collision dynamics using lattice Boltzmann simulation and molecular dynamics,” 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD2015), Edinburgh, UK, 13-17 July (2015).

Q. Mao and K. H. Luo, “Reactive molecular dynamics simulation of hydrogen/oxygen adsorption and dissociation on Pd/TiO2,” Proc. 7th European Combustion Meeting – ECM2015, Budapest, Hungary, March 30 – April 2 (2015). ISBN 978-963-12-1257-0.

S. Schmieschek and P.V. Coveney, "Modelling magnetic drug targeting on the mesoscopic scale", 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD2015), Edinburgh, UK, 13-17 July (2015).

H. Liu, Q. Kang, C.R. Leonardi, S. Schmieschek, A. Narváez, B.D. Jones, J.R. Williams, A.J. Valocchi, J. Harting, "Multiphase lattice Boltzmann simulations for porous media applications", Computational Geosciences, Online first: 1-29 (2015).


M. O. Bernabeu, M. Jones, J. H. Nielsen, T. Krüger, R. Nash, D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C. A. Franco and P. V. Coveney, "Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis", Journal of the Royal Society Interface 11 (99), 20140543 (2014). DOI: 10.1098/rsif.2014.0543

G. B. Davies, T. Krueger, P. V. Coveney, and J. Harting, "Detachment energies of spheroidal particles from fluid-fluid interfaces", Journal of Chemical Physics 141, 154902 (2014). DOI: 10.1063/1.4898071

G. B. Davies, T. Krueger, P. V. Coveney, J. Harting and F. Bresme, “Assembling ellipsoidal particles at fluid interfaces using switchable dipolar capillary interactions”, Advanced Materials, 26: 6800 (2014). DOI: 10.1002/adma.201402419

G. B. Davies, T. Krueger, P. V. Coveney, J. Harting and F. Bresme, “Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces”, Soft Matter 10, 6742-6748 (2014). DOI: 10.1039/C4SM01124D

Q. Li and K. H. Luo, “Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid–vapor flows”, Applied Thermal Engineering 72 (1), 56-61 (2014). DOI: 10.1016/j.applthermaleng.2014.03.030

Q. Li and K. H. Luo, “Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows”, Physical Review E 89 (5), 053022: 1-7 (2014). DOI: 10.1103/PhysRevE.89.053022

Q. Li, K. H. Luo, Q. J. Kang and Q. Chen, “Contact angles in the pseudopotential lattice Boltzmann modeling of wetting”, Physical Review E 90 (5), 053301: 1-9 (2014). DOI: 10.1103/PhysRevE.90.053301

D. Lycett-Brown, K. H. Luo, R. H. Liu and P. M. Lv, “Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method”, Physics of Fluids 26 (2), 023303: 1-26 (2014). DOI: 10.1063/1.4866146

D. Lycett-Brown and K. H. Luo, “Multiphase cascaded lattice Boltzmann method”, Computers and Mathematics with Applications 67 (2), 350-362 (2014). DOI: 10.1016/j.camwa.2013.08.033

E. Monaco, G. Brenner and K. H. Luo, “Numerical simulation of the collision of two micro-droplets with a pseudopotential multiple-relaxation-time lattice Boltzmann model”, Microfluidics and Nanofluidics 16 (1-2), 329-346 (2014). DOI: 10.1007/s10404-013-1202-0

R. W. Nash, H. B. Carver, M. O. Bernabeu, J. Hetherington,  D. Groen, T. Krüger and P. V. Coveney, “Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains”, Physical Review E 89, 023303: 1-13 (2014). DOI:10.1103/PhysRevE.89.023303


Q. Li and K. H. Luo, “Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows”, Physical Review E 88 (5), 053307: 1-10 (2013). DOI: 10.1103/PhysRevE.88.053307

Q. Li, K. H. Luo and X. J. Li, “Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model”, Physical Review E 87 (5), 053301: 1-11 (2013). DOI: 10.1103/PhysRevE.87.053301